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a b s t r a c t

In the United States, the computation of Total Maximum Daily Loads (TMDL) must include a Margin of
Safety (MOS) to account for different sources of uncertainty. In practice however, TMDL studies rarely
include an explicit uncertainty analysis and the estimation of the MOS is often subjective and even
arbitrary. Such approaches are difficult to replicate and preclude the comparison of results between
studies. To overcome these limitations, a Bayesian framework to compute TMDLs and MOSs including an
explicit evaluation of uncertainty and risk is proposed in this investigation. The proposed framework
uses the concept of Predictive Uncertainty to calculate a TMDL from an equation of allowable risk of non-
compliance of a target water quality standard. The framework is illustrated in a synthetic example and in
a real TMDL study for nutrients in Sawgrass Lake, Florida.

© 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Section 303(d) of the U.S. Clean Water Act identifies a Total
MaximumDaily Load (TMDL) as themaximum pollutant load that a
water body can assimilate without violating a specific water quality
standard. A TMDL is computed as the sum of the allowable loads
from point and non-point sources (

P
WLA and

P
LA; respectively)

plus a margin of safety (MOS) as follows (U.S. Environmental
Protection Agency, 1999; Shirmohammadi et al., 2006):

TMDL ¼
X

WLAþ
X

LAþMOS (1)

The MOS is a fraction of the TMDL which fundamentally ac-
counts for the uncertainty in the modeling and calculation of the
assimilative capacity of the water body. The main sources of this
uncertainty aremodel structure uncertainty, input data uncertainty
andmodel parameter uncertainty. The model structure uncertainty
results from errors in model formulation and numerical solution of
the equations describing a particular physical, biological or
m (R.A. Camacho).
chemical process. Input data uncertainty results from errors in field
and laboratory measurements used to force and calibrate the
models. Finally, parameter uncertainty results from the use of
inaccuratemodel parameter values. Given thesemultiple sources of
uncertainty, the MOS represents a critical component of the TMDL.
However, objective and standardized approaches for the compu-
tation of the MOS are limited.

Traditionally, theMOS has been either implicitly incorporated in
a TMDL by using conservative assumptions for the estimation of the
assimilative capacity of the water body or explicitly incorporated in
the TMDL as an independent load allocation as in Eq. (1) (U.S.
Environmental Protection Agency, 1991). The lack of an objective
approach for the computation of the MOS has resulted, however, in
a wide range of subjective and often arbitrary criteria for its
computationwhich in most cases cannot be replicated nor used for
comparative analyses between TMDL studies. In addition, the use of
subjective approaches generally result in unclear relationships
between the TMDL and the MOS and more importantly between
the MOS and the water quality standards. The limitations of using
subjective approaches for the computation of the MOS have been
documented by several researchers including Dilks and Freedman
(2004) in a review of 172 TMDLs performed in eight states,
Langseth and Brown (2010) in a review of 50 TMDLs from New
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England, and Crumpacker and Butkus (2009) in a review of 23
TMDLs from the states of Washington, Oregon, and California.
Langseth and Brown (2010) point out that none of the TMDLs
reviewed in their study explicitly consider the risk of violating the
water quality standards as the basis to define the MOS.

To overcome the limitations of the subjective approaches the
National Research Council recommends the use of objective un-
certainty analyses as the basis for the MOS and TMDL calculation
(NRC, 2001). This recommendation is also supported by several
researchers and practitioners who also advocate the use of uncer-
tainty analysis as a more transparent, reproducible and robust
strategy to define the MOS and TMDL (Ames and Lall, 2008; Dilks
and Freedman, 2004; Langseth and Brown, 2010; Liang et al.,
2016; Reckhow, 2003; Shirmohammadi et al., 2006). Dilks and
Freedman (2004) argued that an objective uncertainty-based-
method to compute the MOS and TMDL should have four impor-
tant attributes. First, the method should explicitly account for the
impacts of uncertainty on the estimation of the MOS and TMDL.
Second, the method should be reproducible. Third, the method
should explicitly define the degree of protection expected from the
TMDL as the probability that the water quality standard will be
satisfied once the TMDL is implemented. And fourth, the method
should identify data limitations and also implementation problems
that could result from TMDLs computed under limited data avail-
ability or with the use of poor quality datasets. This latter aspect,
however, is more related with policy making and requires stake-
holder involvement during the definition of the TMDLs.

To incorporate explicit uncertainty analyses in the TMDL process,
research has been conducted to compute the MOS and TMDL based
onmethods such as First Order Variance Analysis (Park and Roesner,
2012; Zhang and Yu, 2004), Point Estimation Methods (Franceschini
and Tsai, 2008), Bayesian Networks (Alameddine et al., 2011; Ames
and Lall, 2008; Patil and Deng, 2011) and Risk Assessments (Borsuk
et al., 2002; Gronewold and Borsuk, 2009; Hantush and Chaudhary,
2014; Langseth and Brown, 2010). Methods based on risk assess-
ments and Bayesian inference have been subject of increasing
attention during the last decade because they can be used to
explicitly calculate the probability of non-compliance or failure of
the TMDL due to multiple sources of uncertainty. Borsuk et al.
(2002) presented a probabilistic and Bayesian approach to calcu-
late the risk of non compliance and MOS of TMDLs assuming the
errors between the model predictions and observations are inde-
pendent, normally distributed and unbiased. More recently Ames
and Lall (2008) developed a Bayesian network to obtain uncer-
tainty and risk estimates for TMDLs; Gronewold and Borsuk (2009)
developed a software tool to estimate the probability of compliance
of TMDLs from deterministic model results; and Langseth and
Brown (2010) developed a strategy to compute the MOS using risk
based concepts traditionally used in engineering design, although
their strategy does not include an explicit method for the propa-
gation of uncertainty to model predictions. Hantush and Chaudhary
(2014) extended the method proposed by Borsuk et al. (2002)
for more general cases where the errors between the model pre-
dictions and the observations are correlated and biased and also
computed the MOS from an equation of risk of non-compliance.

Risk-based approaches apply the concept of performance failure
to compute a TMDL. In engineering, a system experiences a per-
formance failure when it is unable to perform as expected (Singh
et al., 2007). In the TMDL context, the probability of failure of the
TMDL after implementation is known as the risk of non-
compliance. This probability can be computed using a mathemat-
ical model, if the target concentration ðc*Þ and also the allowed
frequency of non-compliance (bÞ of a water quality standard are
defined. Traditionally, the computation of a TMDL under a risk-
based framework must satisfy:
P
�
Y > c*

��q;X� � b (2)

where PðY > c*
��q;XÞ is the probability that a simulatedwater quality

variable Y will exceed c* given a vector of model parameters q, and a
matrix of input data X such as flows and contaminant loads from
point and non-point sources (e.g. Borsuk et al., 2002; Hantush and
Chaudhary, 2014). Risk based approaches based on Eq. (2) have,
however, an important limitation. Eq. (2) assumes that the left side
of the equation which represents the probability that the model
predictions of a variable of interest ðYÞ will exceed the target con-
centration c*, is equal to the probability that the actual concentra-
tions ðZÞ will exceed the target concentration c*, or PðZ > c*Þ, which
is the probability of interest for management purposes. The above is
an inaccurate assumption because the model exceedance proba-
bility PðY > c*

��q;XÞ and the actual exceedance probability PðZ > c*Þ
can only be equal if the model is a perfect representation of the real
world and is able to reproduce observed concentrations with a 100%
accuracy i.e. an ideal case. In reality PðY > c*

��q;XÞ< > PðZ > c*Þ and
thus, a reformulation of Eq. (2) is necessary to have an accurate
assessment of the risk of failure of the TMDL i.e. PðZ > c*Þ and also a
more accurate basis for the MOS computation.

This investigation has three main objectives. The first objective
is to reformulate Eq. (2) to obtain amore accurate assessment of the
probability that the real world observations will exceed the target
concentration PðZ > c*Þ, i.e. the TMDL risk of failure. The second
objective is to present a Bayesian strategy to solve the resulting
equation for PðZ > c*Þ; and the final objective is to propose a
strategy to compute the MOS and TMDL that satisfy an allowable
risk of non-compliance ðbÞ.

The proposed approach to calculate PðZ > c*Þ incorporates a
Bayesian parameter inference strategy to explicitly account for the
impacts of model and parametric uncertainty. The Bayesian
parameter inference is based on the likelihood function recently
proposed by Hantush and Chaudhary (2014) which is relatively
general for most practical cases. The method is demonstrated in a
theoretical biochemical oxygen demand TMDL using the estuarine
Streeter-Phelps model, and in a real application of the Water
Quality Analysis Simulation Program (WASP) (Ambrose et al., 1993)
to determine a nutrient TMDL in Sawgrass Lake, Florida, USA. The
paper is organized as follows. Section 2 formulates the Bayesian
framework to compute PðZ > c*Þ, MOS and TMDL. Section 3 and
Section 4 present the case studies and results, and Section 5 pre-
sents the discussion and conclusions of the investigation.

2. Risk of non-compliance of a Total Maximum Daily Load
(TMDL)

A critical piece of information for decision makers and stake-
holders is the probability or risk of failure of the TMDL. This is the
probability that the water quality of a receiving water body will
exceed a particular standard following the TMDL implementation
or PðZ > c*Þ. The existing risk based approaches assume that this
probability is equal to the probability that the model predictions Y
will exceed the target standard c* or PðY > c*

��q;XÞ. In practice,
because of the existence of multiple sources of uncertainty, models
are unable to reproduce observationswith perfect accuracy and as a
results YsZ and PðY > c*

��q;XÞsPðZ > c*Þ. To formulate an alterna-
tive expression to compute PðZ > c*Þ it is necessary to bear in mind
that decisions and inferences about Z (the future water quality
concentrations under TMDL conditions) are 'conditional' on the
information provided at present by the model predictions ðYÞ,
where Y ¼ gðbq;XÞ, g represents a deterministic model and bq is a
vector of calibrated parameters. This conditionality can be explicitly
taken into account to reformulate Eq. (2) as follows:



R.A. Camacho et al. / Environmental Modelling & Software 101 (2018) 218e235220
P
�
Z > c*

���Y jbq;X�> c*
�
� b (3)

Eq. (3), hereafter also known as the probability of failure or non-
compliance, represents the probability that the futurewater quality
concentrations under TMDL conditions will exceed the standard
concentration given that the standard concentration is exceeded by
the model predictions. Eq. (3) is derived from the concept of pre-
dictive uncertainty (Krzysztofowicz, 1999; Mantovan and Todini,
2006; Todini, 2009). Comparing Eqs. (2) and (3) shows that Eq.
(3) is a more realistic formulation of the risk of violating a water
quality standard.

The conditional cumulative distribution function given by
Eq. (3) is mathematically equivalent to
P½Z > c*

��ðYjbq;XÞ> c*� ¼ 1� FZjY ½Z ¼ c*
��ðYjbq;XÞ ¼ c*� or

P
h
Z > c*

���Y jbq;X�> c*
i
¼ 1�

FY ;Z
h�

Y jbq;X� ¼ c*; Z ¼ c*
i

FY
h�

Y jbq;X� ¼ c*
i (4)

where FY ;Z is the joint cumulative probability distribution of Y and
Z, and FY is the marginal cumulative distribution of Y . Eq. (4) is
derived from the definition of the conditional density function
fZjY ðzjyÞ which is given by

bf ZjYðzjyÞ ¼ bf Y ;Zðy; zÞbf Y ðyÞ (5)

where bf Y;Zðy; zÞ is the joint probability density function of Y and Z,
and bf Y ðyÞ is the marginal probability density of Y (Walpole et al.,
2013). The implicit notation bf Y ;Z and bf Y is used to express that
both distributions are conditional on a given set of parameters bq,
i.e. bf Y ;Zðy; zÞ ¼ fY ;Z ½ðyjbq;XÞ; z�. If Z and Y are continuous and boun-
ded by finite domains ½a; b� and ½d; e�; respectively, and c� existed in
both domains, Eq. (4) could be solved by

P
h
Z > c*

���Y jbq;X�> c*
i
¼ 1�

Z c*

a

Z c*

d

bf Y ;Zðy; zÞdydzZ c*

d

bf Y ðyÞdy (6)

where by definition bf Y ðyÞ ¼ Zb
a

bf Y;Zðy; zÞdz. Given that it is infeasible

in practice to derive analytical expressions for bf Y;Zðy; zÞ andbf ZjY ðzjyÞ, Eq. (6) must be evaluated in discrete form by means of

P
h
Z > c*

���Y jbq;X�> c*
i
¼ 1�

Pc*
z¼a
Pc*

y¼d
bf Y ;Zðy; zÞPc*

y¼d
bf Y ðyÞ (7)

or if the water quality standard is formulated in terms of a mini-
mum concentration that must be maintained for a specific purpose
(e.g. dissolved oxygen) by

P
h
Z � c*

���Y jbq;X� � c*
i
¼
Pc*

z¼a
Pc*

y¼d
bf Y ;Zðy; zÞPc*

y¼d
bf Y ðyÞ (8)

To solve Eq. (7) or Eq. (8) it is necessary to know bf Y ;Zðy; zÞ orbf ZjY ðzjyÞ which contain all the necessary information to draw in-
ferences about the future water quality concentrations (Z) under
TMDL conditions, based on the model predictions Y . Therefore, a
strategy to find bf Y ;Zðy; zÞ and bf ZjY ðzjyÞ must be formulated. In the
ideal case, if the model perfectly matches the observations at any
time t, yt ¼ zt any inference about Z could be constructed on the
basis of bf Y ðyÞ without the need of bf ZjY ðzjyÞ because then and only
then fZðzÞ ¼ bf Y ðyÞ and the problem would be reduced to the con-
ventional Eq. (2).

Eqs. (7) and (8) represent the uncertainty on Z based on a spe-
cific model, a set of input datasets, and a given set of model pa-
rameters. If other sources of uncertainty such as model structure or
model parameters substantially impact model predictions, then
these sources of uncertainty need to be individually incorporated in
the evaluation of Eq. (7) or Eq. (8) as discussed below.
2.1. Computation of the conditional distribution bf ZjY
Todini (2008) proposed the Model Conditional Processor (MCP)

as a general approach to obtain the joint density function bf Y ;Zðy; zÞ
and the conditional probability density function bf ZjY ðzjyÞ in hy-
drological applications. In the MCP, the probability distributions of
the observations (Z) and model predictions (YÞ are conveniently
transformed into normal distributions with zero mean and unit
variance. This transformation is convenient because the join dis-
tribution of the transformed variables is a normal bivariate density
function that can be easily used to obtain amathematical expression
for the conditional distribution bf ZjY ðzjyÞ. Todini (2008) formulated
the MCP based on the concepts of predictive uncertainty and as a
possible generalization of the Hydrologic Uncertainty Processor
(Krzysztofowicz and Kelly, 2000) and as an alternative to the
BayesianModel Averaging (BMA)method (Krzysztofowicz, 1999). In
the MCP, the transformations of Z and Y into the normal space (h
and bh, respectively) are performed as follows:

� First, the quantiles associated with the empirical Weibull
ranking distributions of Z and Y are calculated by sorting the
observations Z ¼ fz1; z2…zng and the corresponding model
predictions Y ¼ fy1; y2…yng in ascending order, and by assign-
ing to each element a probability of PðZ � ziÞ ¼ i=ðnþ 1Þ and
PðY � byiÞ ¼ i=ðnþ 1Þ respectively.

� Second, the assigned Weibull probabilities for Z and Y are re
organized according to the original time sequence of Z and Y.

� Third, the time series Z and Y are transformed to time series in
the normal space h and bh respectively using the Normal
Quantile Transform, NQT (Van der Waerden, 1952, 1953). The
process consists in computing from a standard normal distri-
bution the values of h and bh that correspond to the Weibull
probabilities computed in the previous step. The transformed
variables h and bh are marginally distributed according to a
normal distribution N(0,1) and the joint distribution bf

H;bH ðh; bhÞ
(where Н is the capital of h) follows a normal bivariate density
function from which is possible to calculate the distributionbf
H;bH ðhjbhÞ as (Coccia and Todini, 2011; Todini, 2008),

bf
H;bH ðhjbhÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ps2
hjbhq exp

 
�
h� m

hjbh
2s2

hjbh
!

(9)

where

m
hjbh ¼ r

hbh$bh (10)

s2
hjbh ¼ 1� r2

hbh (11)

and r
hbh is the correlation coefficient between the series h and bh. To

compute r
hbh the series h and bh must be sorted according to the

original time sequence of Z and Y.
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� The final step to compute bf ZjY ðzjyÞ consists in resampling the
distribution bf

H;bH ðhjbhÞ in the normal space and converting the
sampled quantiles into the real space by means of the inverse
process. If during resampling the probabilities are larger than
n=ðnþ 1Þ or smaller than 1=ðnþ 1Þ, Coccia and Todini (2011)
suggest the use of the following models to adjust the upper
and lower tails of the Weibull distributions associated with Z
and Y

PðzÞ ¼ plow$
�

z
zðplowÞ

	a
(12)

PðzÞ ¼ 1�
�
1� pup

�
$

24 zmax � z

zmax � z
�
pup
�
35b (13)

where plow and pup are the lower and upper probability limits from
where the tail models Eqs. (12) and (13) are applied. zðplowÞ and
zðpupÞ are the values of Z corresponding to the probability limits
plow and pup. zmax is the maximum value of Z for which the prob-
ability is assumed to be 1 (e.g. twice the maximum value of z).
Finally, a and b are the exponents that need to be estimated such as
for example by means of a Least Square procedure.

2.1.1. Computation of uncertainty estimates based on bf ZjY
A useful application of the conditional distribution bf ZjY ðzjyÞ is to

estimate the uncertainty around model predictions. Given thatbf ZjY ðzjyÞ is conditional on the set of model parameters bq, the dis-
tribution can be used for example, to evaluate the 95% confidence
intervals around the predictions of a manually calibrated model. To
compute the 95% confidence intervals it is necessary to find from

the cumulative distribution bF
HjbH ðhjbhÞ, this is, from the image ofbFZjY ðzjyÞ in the normal space the values of h0:025 and h0:975 that

satisfy PðН � hjbh ¼ bhtÞ ¼ 0:025 and PðН � hjbh ¼ bhtÞ ¼ 0:975

respectively. The cumulative distribution bF
HjbH ðhjbhÞ is obtained

from the integration of Eq. (9) and is given by

bF
HjbH ðhjbhÞ ¼ 1

2

 
1þ erf

 
h� m

hjbh
s
hjbh ffiffiffi

2
p

!!
(14)

The inverse of bF
HjbH ðhjbhÞ i.e. bF�1ðpÞ where p denotes a proba-

bility value, is used to directly obtain the unknown values of h i.e.bF�1
HjbH ð0:025Þ ¼ h0:025 and bF�1

HjbH ð0:975Þ ¼ h0:975. bF�1
hjbhðpÞ by

bF�1
HjbH ðpÞ ¼ m

hjbh þ s
hjbh ffiffiffi

2
p

erf�1ð2p� 1Þ (15)

Once the values of h0:025 and h0:975 have been computed with
Eq. (15), these values are transformed into the real space using the
empirical distribution of Z computed in Section 2.1 in order to
obtain the values of z0:025 and z0:975, respectively.

2.2. Assessment of parametric uncertainty

The distribution bf ZjY ðzjyÞ computed in Section 2.1 is conditional
on the set of calibrated parameters bq or bf ZjY ðzjyÞ ¼ fZjY ½zjðyjbq;XÞ�. If
parametric uncertainty is an important source of uncertainty, then
the full probability distribution of themodel parameters fQðqÞmust
be obtained and marginalized out from bf ZjY ðzjyÞ. Once marginal-
ized, the notation bf ZjY ðzjyÞ can be dropped and instead fZjY ðzjyÞ
can be used to indicate that this distribution is not conditional
on the parameters anymore, this is, fZjY ðzjyÞ ¼ fZjY ½zjðyjXÞ�. The
distribution fqðqÞ is known as the posterior probability distribution
of the model parameters and is conditional on the water body
concentrations (Z) and model input dataset including the point and
non-point sources ðXÞ i.e. fqðqjZ;XÞ. The distribution fqðqjZ;XÞ can
be marginalized out from bf ZjY ðzjyÞ by,
fZjYðzjyÞ ¼

Z
Q

f ðzjðyjq;XÞÞfqðqjZ;XÞdq (16)

where Q is the ensemble of all possible parameter realizations.
Because it is impossible to find an analytical solution to the
multidimensional integral overQ, Eq. (16) needs to be evaluated in
discrete form as

fZjYðzjyÞ ¼
Xm
i¼1

f ½zjðyjqi;XÞ�fqðqijZ;XÞ (17)

where m is a finite number of samples (i.e. parameter combina-
tions) from the posterior probability distribution fqðqjZ;XÞ
(Camacho et al., 2015; Mara et al., 2016). These samples, and in
general, an approximate solution for fqðqjZ;XÞ can be obtained
using Bayesian analysis by noting that

fqðqjZ;XÞ ¼
f ðZ;XjqÞfQðqÞZ

Q

f ðZ;XjqÞfqðqÞdq
(18)

where fQðqÞ is the prior probability density function of the
model parameters and f ðZ;XjqÞ is the conditional probability
density function of observations given the parameters q. The de-
nominator in Eq. (18) is a constant that ensures the area under
fqðqjZ;XÞ is equal to one and therefore can be discarded to obtain a
tractable form of Eq. (18) (Gelman et al., 2004; Gilks et al., 1996).
This is convenient, given that the multidimensional integralR
Q

f ðZ;XjqÞfqðqÞdq cannot be analytically computed in practice. Eq.
(18) can also be modified by taking into account that in theory
f ðZ;XjqÞ represents the likelihood function of the parameters or
f ðZ;XjqÞ ¼ LðqjZ;XÞ. Further details on Bayesian analysis and like-
lihood functions can be found elsewhere (Kennedy and O'Hagan,
2001; Mantovan and Todini, 2006; Qian et al., 2003).

In practice, a likelihood function works similar to an objective
function assigning a probability to a given set of parameter values
based on the level of agreement achieved between predictions and
observations. Parameter sets that result in a poor agreement (large
residuals) between predictions and observations are assigned a
small likelihood value. This means that the parameters have a low
probability of being representative of the system under analysis.
Meanwhile, parameter sets that result in a good agreement (small
residuals) between predictions and observations are assigned a
high likelihood value. This means that the parameters have a high
probability of being representative of the system under analysis.

After appropriate modifications, Eq. (18) can be rewritten as

fqðqjZ;XÞfLðqjZ;XÞfQðqÞ (19)

where LðqjZ;XÞ is calculated from the errors between the obser-
vations Z and model predictions Y . For this purpose, the observa-
tions Z can be expressed as a function of the model predictions Y
using the following additive model

Z ¼ Y þ ε (20)

where ε represents a vector of errors or deviations of Y from Z
caused by measurement, model input, model parameter and model
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structure errors. In some cases, the errors can be unbiased, inde-
pendent and identically distributed and could be described using a
normal or Gaussian distribution Nð0; s2

ε
Þ (Cho et al., 2016). How-

ever, this idealistic Gaussian error model is rarely applicable as the
errors often exhibit temporal correlations, heteroscedasticity, and
skewness (Li et al., 2011; Maranzano and Krzysztofowicz, 2004).
Because of this, it is usually necessary to find an alternative model
capable of describing complex error structures (Schoups and Vrugt,
2010), or to implement mathematical transformations to satisfy the
basic Gaussian error model. The following first-order autore-
gressive error model is relatively general for most real applications
where the errors may be biased or/and autocorrelated (Hantush
and Chaudhary, 2014; Li et al., 2011)

εt � m ¼ f½εt�1 � m� þ ε (21)

where m is the mean of the residuals, f is a first order correlation
coefficient and ε � Nð0; s2

ε
Þ. The Likelihood function for this error

model is computed for each set of parameter samples qi,
i ¼ 1; 2; :::m as follows:

LðqijZ;XÞ¼ð2pÞ�n=2ðs
εiÞ�n

Yn
j¼1

exp

(
�1
2

"
εj�mi�fi

�
εj�1�mi

�
s
εi

#2)
(22)

Eq. (22) is valid for moderate to large sample sizes of n. The
likelihood function defined above overcomes the limitations of
Bayesian inference methods that assume the errors are indepen-
dent and unbiased (e.g. Borsuk et al., 2002). Further details related
to the computation of this likelihood function is presented in
Appendix C. Meanwhile the procedure to obtain calibrated
parameter estimates from fqðqjZ;XÞ is discussed in Appendix D.

2.2.1. Computation of uncertainty estimates including parametric
uncertainty

In Section 2.1.1 it was explained how to obtain estimates of
model uncertainty conditional on a specific set of parameter values

using bF
HjbH ðhjbhÞ. If the impacts of parametric uncertainty are

incorporated in the evaluation of the 95% confidence intervals, it is
necessary to find the unconditional cumulative distribution func-
tion F

HjbH ðhjbhÞ. Once obtained, similar transformations as those

presented in Section 2.1.1 for bF
HjbH ðhjbhÞ can be implemented for

F
HjbH ðhjbhÞ to obtain the unconditional cumulative distribution

function FZjY ½zjðyjq;XÞ� and the unconditional values of z0:025 and
z0:975. FHjbH ðhjbhÞ is computed by simply integrating out the effects of

the posterior parameter distribution fqðqjZ;XÞ from bF
HjbH ðhjbhÞ by

means of

F
HjbH ðhjbhÞ ¼

Z
Q

bF
HjbH ðhjbhÞfqðqjZ;XÞdq (23)

or in discrete form also by replacing bF
HjbH ðhjbhÞ using Eq. (14) as,

F
HjbH ðhjbhÞ ¼Xm

i¼1

1
2

"
1þ erf

 
h� m

hjbh
s
hjbh ffiffiffi

2
p

!#
fqi
ðqijZ;XÞ (24)

where erf is the Gaussian error function. Eq. (23) and Eq. (24)
represent the Bayesian averaged cumulative distribution
F
HjbH ðhjbhÞ weighted by the posterior parameter distribution
fqi
ðqijZ;XÞ: As in Section 2.1.1, the values of h for which PðН � hjbh ¼
bhoÞ ¼ 0:025 and PðН � hjbh ¼ bhoÞ ¼ 0:975 can be obtained by
means of F�1

hjbhðPÞ ¼Pm
i¼1
bF�1
hjbhðPÞ*fqi

ðqijZ;XÞ by using bF�1
hjbhðPÞ from

Eq. (15). The resulting values are then transformed into real space
using the empirical distribution of Z computed in Section 2.1 to
obtain the values of z0:025 and z0:975; respectively.

2.3. Computation of Total Maximum Daily Loads and probability of
non-compliance

Once the conditional bf ZjY ½zjðyjbq;XÞ�, or unconditional
fZjY ½zjðyjXÞ� distribution has been computed using the strategies
outlined in Sections 2.1 and 2.2, it is possible to use them in sce-
nario analysis mode to directly determine the TMDL. For this, it is
necessary to evaluate the probability of violating the water quality
standard under different contaminant load reductions (reflected in
the model by changing the model inputs X) until finding a load
reduction that simultaneously satisfies the target concentration c*

and the allowable probability of non-compliance b.
The conditional distribution bf ZjY ½zjðyjbq;XÞ� can be used in TMDL

studies where there is a high level of confidence in the calibrated
parameter values, or in studies where even though parametric
uncertainty can be an important source of error, it is computa-
tionally unfeasible to conduct Monte Carlo simulations to compute
the posterior parameter distribution and the unconditional distri-
bution fZjY ½zjðyjXÞ�. For example in studies with medium and
large scale receivingwater bodymodels such as lakes and estuaries.

If the TMDL is computed using bf ZjY ½zjðyjbq;XÞ�, that is, conditional on
the calibrated parameters values, then, to estimate the probability
that after the TMDL implementation the concentrations Z will
exceed the target concentration c* given that the model predictions

Y exceed c* i.e. PðZ > c*
��ðYjbq;XÞ> c*Þ it is necessary to: 1) estimate

the values of Y ¼ c* and Z ¼ c* in the normal space, or bh ¼ c*bh and

h ¼ c*h; respectively, 2) compute bF
hjbhðh ¼ c*h

���bh ¼ c*bhÞ using Eq. (14)

which is equivalent to the probability PðZ ¼ c*
��ðYjbq;XÞ ¼ c*Þ and

3) compute the probability PðZ > c*
��ðY jbq;XÞ> c*Þ as

PðZ > c*
��ðYjbq;XÞ> c*Þ ¼ 1� PðZ ¼ c*

��ðYjbq;XÞ ¼ c*Þ. The above
three steps are repeated for different load reduction simulations

until PðZ > c*
��ðYjbq;XÞ> c*Þ � b.

If computational resources are not a limitation and the posterior
parameter distribution can be obtained through Monte Carlo
simulation using the procedures discussed in Section 2.2, then the
unconditional distribution fZjY ½zjðyjXÞ� should be used to account
for the parametric uncertainty in the TMDL study. Steps 1) through
3) are also applied when using fZjY ½zjðyjXÞ� with the only difference
that instead of using Eq. (14) i.e. bF

hjbhðh ¼ c*h
���bh ¼ c*bhÞ, Eq. (24) or

F
HjbH ðh ¼ c*h

���bh ¼ c*bhÞ is used. These three steps are repeated itera-
tively by changing the contaminant load (X) until the probability of
non-compliance is less than or equal to b to satisfy Eq. (3).

The iterative load reduction process is stopped at the load
condition that satisfies PðZ > c*

��ðYjbq;XÞ> c*Þ � b. This load directly
represents the TMDL and includes an explicit evaluation of
uncertainty.

2.4. Margin of safety computation

The Margin of Safety (MOS) represents a fraction of the
maximum permissible load L (i.e. rf L where 0< rf <1) which is
subtracted to obtain the final TMDL estimate, i.e.,

TMDL ¼ L� rf L ¼ L�MOS (25)
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The TMDLwas computed in Section 2.3 andwas derived from an
explicit uncertainty analysis framework. Themaximumpermissible
load L; on the other hand, can be obtained as usual, by running a
calibrated model for different contaminant loads, until the model
predictions satisfy the target concentration c*. Once the TMDL and L
are computed, is possible to determine the resulting MOS for the
problem as

MOS ¼ L� TMDL (26)

The application of the uncertainty and risk analysis framework
introduced in this section is illustrated in the following examples.
The program scripts are available upon request.
D ¼

8>>><>>>:
kd

ðka � kdÞ
W
Q

�
1
m1

exp


Ux
2E

ð1þm1Þ
�
� 1
m2

exp


Ux
2E

ð1þm2Þ
�	

for x � 0

kd
ðka � kdÞ

W
Q

�
1
m1

exp


Ux
2E

ð1�m1Þ
�
� 1
m2

exp


Ux
2E

ð1�m2Þ
�	

for x � 0

(30)
3. Example 1: TMDL for BOD in an estuary with a point source

This example considers a very long estuary subject to a waste
water point discharge at x ¼ 0 (Fig. 1). The estuary is assumed well
mixed in the lateral and vertical directions such that the water
quality only changes in the longitudinal direction. The problem
consists of computing the maximum biochemical oxygen demand
(BOD) load that can be discharged into the estuary in order to
maintain a minimum level of dissolved oxygen of c* ¼ 5 mg/L with
an acceptable risk of non-compliance of b ¼ 10%. The steady state
Streeter-Phelps model adapted to estuaries (Chapra, 1997) is used
to solve the problem. The model is obtained from a mass balance of
BOD and DO in the system, considering steady state conditions. The
resulting model includes advection and dispersion terms (Martin
and McCutcheon, 1999) for the BOD and DO concentrations and is
given by:

dBOD
dt

¼ �U
dBOD
dx

þ E
d2BOD
dx2

� kdBOD ¼ 0 (27)

dD
dt

¼ �U
dD
dx

þ E
d2D
dx2

� kaDþ kdBOD ¼ 0 (28)

where BOD ½ML�3� represents the biochemical oxygen demand
concentration, U ½LT�1� represents the net flow velocity, E ½L2T�1�
represents the dispersion coefficient which simulates the effects of
Fig. 1. Conceptual representation of the Streeter-Phelps model applied for an estuary with a
lateral directions.
tidal dispersion, x ½L� is the longitudinal direction extending from an
upstream point of nontidal influence to themouth of the estuary, kd
½T�1� is a first order decay rate for BOD, D ½ML�3� represents the DO
deficit referred to the local saturation level (i.e. D ¼ Os � O) and ka
½T�1� is a first order reaeration rate constant. Parameters E, kd, and
ka are calibrated based on comparisons between simulations and
observations of BOD and DO concentrations. Meanwhile, the input
variables W , Q , U are specified using field observations. The
analytical solution of Eqs. (27) and (28) is,

BOD ¼


BODoepx for x � 0
BODoerx for x � 0

(29)

and
where W ½MT�1� is the waste water BOD load, Q is the flowrate
½L3T�1�, and BODo ¼ W=ðQm1Þ is the BOD concentration in the
receiving water body at the point of discharge. The remaining ex-
pressions are given by m1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4kdE=U2

p
, m2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4kaE=U2

p
,

p ¼ Uð1þm1Þ=2E and r ¼ Uð1�m1Þ=2E.

3.1. Generation of synthetic concentrations of dissolved oxygen

Eqs. (29) and (30) were solved and randomly perturbed to
generate a synthetic dataset of BOD and DO concentrations for a long
estuary, subject to the following conditions (Fig. 1): E ¼ 300m2=s,
kd ¼ 0:35=day, ka ¼ 0:30=day, W ¼ 300g=s, Q ¼ 3:5m3=s,
U ¼ 0:01m=s, and Os ¼ 10 mgO=L. The magnitude of E was selected
to reflect the turbulent dispersion caused by tidal oscillations. Fig. 2
shows the resulting longitudinal steady state evolution of in-stream
BOD and DO concentrations from the point of discharge at x ¼ 0.
Computations were performed every Dx ¼ 500 m from a point
located at x ¼ �45;000 m upstream of the discharge to a point
located x ¼ 50;000 m downstream of the discharge. The model
predicts a sharp increase of the BOD concentration at the point of
discharge up to approximately 12mg/L, which decreases upstream
and downstream of the point source due to dispersion and BOD
decay. The amount of oxygen consumed is shown as a DO deficit and
reaches a maximum of approximately 7mg/L near to the discharge
point (Fig. 2a). The ultimate response of the DO in the estuary
will follow the profile shown in Fig. 2b (continuous blue line). The
point source (Eqs. (29) and (30)). The estuary is assumed well mixed in the vertical and



Fig. 2. Solution of the model given by Eqs. (29) and (30) and synthetic data generated for the uncertainty analysis. a) Steady state profiles of BOD and DO deficit (dashed blue and
red lines respectively) resulting from the solution of Eqs. (29) and (30), and synthetic BOD samples generated after incorporating an error term (green dots). b) DO concentration for
saturation conditions (red solid line), steady state profile of DO resulting from the solution of the ESP model (dashed blue line) and synthetic DO samples after incorporating an error
term (green dots). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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concentration of DO saturation is shown in Fig. 2b as a constant value
of 10 mgO/L. The model predicts that the waste water discharge
causes a drop in the estuary's DO concentration up to approximately
3mg/L close to the point source and that a violation of the
standard of 5mg/L occurs in the estuary segment that extents
approximately between �8;000m< x<12;000 m.

The profiles of BOD and DO in Fig. 2 (BODm and DOm) are used as
a set of field observations collected for a TMDL study (BODobs and
DOobs). For this, an observational error (x) is included into BODm and
DOm to represent equipment inaccuracies and other procedural
errors (i.e. BODobs ¼ BODm þ x1 and DOobs ¼ DOm þ x2). The
magnitude of x can be defined from the precision of existing DO and
BOD measurement techniques. Generally, the errors in DO mea-
surement vary between zero and 5%, while the errors in BOD
measurements vary between 5 and 15% (Kunz, 2011). Based on
the above information the observational error terms x1 and x2
can be defined as random variables that follow a normal distribu-
tion centered at the BODm and DOm values, and with standard
deviations equal to 10% of the BODm value i.e.
x2 � Nðmx2 ¼ BODm; sx2 ¼ 0:1BODmÞ and 5% of DOm value, i.e.
x1 � Nðmx1 ¼ DOm; sx1 ¼ 0:05DOmÞ. Thus, recalling the properties of
a normal distribution, approximately 99.7% of the samples of x1 and
x2 will be bounded by ±3sx1 (i.e. ±0:3BODm) and ±3sx2 (i.e.
±0:15DOm), respectively.

By adding x1 and x2 to BODm and DOm respectivelywe obtain the
“observed” profiles BODobs and DOobs shown as circles in Fig. 2.
BODobs and DOobs, or “observed” profiles are used to determine the
maximum load of BOD that can be discharged into the estuary to
maintain the DO concentration above 5mg/L.
3.2. Uncertainty analysis

The uncertainty analysis requires as a first step a definition of
the parametric space of E, kd, and ka. This is, the range of minimum
and maximum values that each parameter can take. Once defined,
different combinations of E, kd, and ka are constructed by randomly
sampling the parametric space. The model defined by Eqs. (29) and
(30) is then executed with each parameter combination to evaluate
the predictive capacity of the model to reproduce the set of ob-
servations BODobs and DOobs.

Based on the literature values of E, kd, and ka (Camacho et al.,
2014; Chapra, 1997; Wool et al., 2003; Zou et al., 2006), the
parametric space was defined by 200m2=s< E<500m2=s,
0:2=day< kd <0:6=day, and 0:15=day< ka <0:6=day. Non-
informative uniform distributions were used to sample the para-
metric space. The uniform priors were used in this investigation to
reflect a lack of preference for a particular combination of
qi ¼ ½Ei; kdi; kai]. However, other investigations could use informa-
tive distributions such as triangular distributions if there is infor-
mation that may be included in the inference process such as BOD
decay rates determined in laboratory and dispersive coefficients
and reaeration rates from tracer experiments. For this exercise a
total of 40,000 parameter combinations were constructed by
sampling from the non-informative distributions.

The model was executed 40,000 times using each parameter
combination and keeping constant W (300g=s), Q (3:5m3=s), U
(0:01m=s), and Os (10 mgO=L). Then, for each parameter combi-
nation the model predictions of BOD and DO as well as the syn-
thetic observations BODobs and DOobs were used to compute the
conditional predictive distributions of BOD and DO i.e.bf BODobs jBODsim

ðBODobsjBODsimÞ and bf DOobs jDOsim
ðDOobsjDOsimÞ as

explained in Section 2.1 using Eq. (9) through Eq. (13). To obtain the
unconditional predictive distributions fBODobsjBODsim

and fDOobs jDOsim
it

was necessary to compute the posterior distribution of model pa-
rameters fqðqjZ;XÞ as explained in Section 2.2. and to marginalize it
from bf BODobs jBODsim

and bf DOobs jDOsim
using Eq. (17). The posterior

parameter distribution fqðqjZ;XÞ was computed based on Eq. (22)
using the following likelihood function LðqjZ;XÞ



LðqijZ;XÞ ¼
ð2pÞ�n1=2

ðsε1i Þn1

Yn1

j¼1

exp

(
� 1
2

"
ε1j � m1i � f1i

�
ε1j�1 � m1

�
sε1

#2)
*
ð2pÞ�n2=2

ðsε2iÞn2

Yn2

k¼1

exp


� 1
2

�
ε2k � m2i � f1iðε2k�1 � m2Þ

sε2

	2�
(31)
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which represents the product of the individual likelihood functions
for BOD and DO, evaluated for a specific parameter combination
qi ¼ ½Ei; kdi; kai]. The parameters of this likelihood function [m1i, f1i,
sε1i ] and [m2i, f2i, sε2i ] were computed as explained in Appendix C
using the series of residuals between the synthetic observations
and model predictions of BOD (i.e. ε1) and DO (i.e. ε2) respectively.

A statistical analysis of ε1 and ε2 for different parameter (q)
combinations shows that Eq. (31) is appropriate to describe the
most important statistical properties of the residuals. For example,
for the parameter set Ei ¼ 416; kdi ¼ 0:37; kai ¼ 0:27 the histogram
and partial autocorrelation function of the residuals ε1 and ε2
shows that the residuals are normally distributed and can be rep-
resented by a simple AR(1) model (Fig. 3).

After computing the unconditional predictive distributions
fBODobsjBODsim

and fDOobs jDOsim
the Bayesian averaged profiles of BOD

and DO and the uncertainty bounds at the 95% confidence level
were computed in the normal space using Eq. (24) by solving for
BOD F�1

hBODjbhBOD

ð0:025Þ and F�1
hBODjbhBOD

ð0:975Þ, and for DO
Fig. 3. Frequency distribution and partial autocorrelation function of the series of residuals
errors e.g. AR(1) can be used to represent the statistical properties of ε1 and ε2.
F�1
hDO jbhDO

ð0:025Þ and F�1
hDOjbhDO

ð0:975Þ. The results were then converted

to the real space using the ranking distributions of the synthetic
observations BODobs and DOobs as described in Section 2.2.1. The
results of these computations are presented in Fig. 4 which shows
that the Bayesian averaged profiles of BOD and DO closely follow
the synthetic observations, and that most of these synthetic ob-
servations fall within the computed 95% confidence bounds. The
uncertainty bounds associated with the DO profile are larger than
those associated with the BOD profile. This is because the DO
concentration in the estuary is not only affected by the decay of the
organic matter (represented by the parameter kd) but also strongly
affected by reaeration processes (represented by ka). This explains
why the shape of the upper DO confidence boundwhich represents
high reaeration rates and a fast recovery capacity of the estuary is
substantially different from that of the lower confidence bound
which represents low reaeration rates and slow recovery capacity
of the estuary. Finally, note that the uncertainty in the predictions
of BOD and DO is minimal at x ¼ 0 where the equations are reduced
ε1 (BOD) and ε2 (DO). A likelihood function for normally distributed and uncorrelated



Fig. 4. Comparisons between synthetic profiles of BOD and DO and the Bayesian model predictions including 95% confidence limits.
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to a simple mass balance of BOD and DO regardless of the magni-
tude of kd and ka.

3.3. Estimation of calibrated parameters

The calibrated values of E (bE), kd (bkd), and ka (bka), were defined
by first computing the marginal distributions of E, kd, and ka from
the posterior parameter distribution fqðqjZ;XÞ obtained in Section
3.2, and then by computing the mean of the resulting distributions.
Fig. 5. Posterior marginal distribution
Fig. 5 shows the marginal distributions of E, kd, and ka derived from
the posterior parameter distribution fqðqjZ;XÞ. The marginal dis-
tributions (shaded bars) show the regions within the parametric
space where there is a significant probability of finding the optimal
or calibrated parameter values. In this case, 290< E<340,
0:32< kd <0:37, and 0:24< ka <0:32. From the 40,000 model runs,
those performed with parameter samples from the above ranges
resulted in the closest agreement between model predictions and
“observations” and had the largest likelihood values (Eq. (31)).
s of the ESP model parameters.
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Model runs with parameter combinations outside these ranges
resulted in almost null values of the likelihood function, thus
indicating a poor agreement between model predictions and
observations.

The means of the marginal distributions of E, kd, and ka are
presented in Table 1, along with the parameter values used to
generate the “observations”. Table 1 also includes the standard
deviation of each distribution which can be used as a measure of
uncertainty in the estimation of E, kd, and ka. The computed means
closely match the true parameter values with relative errors of less
than 7%. These are very good parameter estimates taking into ac-
count that the “observations” of BOD and DO were distorted by
random error.
Fig. 6. Dissolved Oxygen concentrations as a function of the BOD load for different
risks of non-compliance. This figure suggests that the conventional approach is close to
a risk of non-compliance of 50%.
3.4. TMDL and MOS

To compute the TMDL or maximum permissible load of BOD to
maintain a DO concentration above 5mg/L with a 10% risk of non-
compliance three strategies were implemented and compared. The
first was a conventional approach where the calibrated model was
used to evaluate different load reduction scenarios until the stan-
dard was achieved. In the second and third approaches the condi-
tional (bf BODobs jBODsim

and bf DOobs jDOsim
) and unconditional (fBODobsjBODsim

and fDOobs jDOsim
) distributions were used to estimate the permissible

load. The latter two approaches included an acceptable probability
or risk of non-compliance but in the second strategy the load was
computed conditional on the calibrated model parameters while in
the third strategy the load was computed unconditional on the
model parameters.

The first strategy to estimate the permissible load was to run the
model for different BOD load reduction scenarios ðWscenarioÞ until
finding the maximum loadWmax for which the resulting DO profile
and in particular the concentration below the point source was
above the 5mg/L standard. The location below the point source is
critical because the minimum DO concentration in the estuary
occurs at this location regardless of the magnitude of the BOD load.
The results are summarized in Fig. 6 and Table 2. Fig. 6 shows the
minimum DO levels predicted for the estuary under different BOD
load conditions. Table 2 presents the maximum BOD load Wmax

that can be discharged into the estuary to maintain a minimum DO
concentration of 5mg/L. The table also includes the maximum BOD
loads that would be allowed if the standard were 4mg/L, 6mg/L
and 7mg/L. The BOD load computed under the conventional
approach is, from Section 2.4, an estimate of the load L in Eq. (25), as
it does not include any assessment of uncertainty nor includes the
risk of non-compliance. Table 2 indicates that the BOD load
reduction necessary to achieve the DO standard of 5mg/L is equal
to L¼ 220 g/s.

The second strategy was to run the model for different BOD
loads ðWscenarioÞ and to evaluate for each scenario the probability
of non-compliance PðDOobs >5mg=LjðDOsimjbq;BODloadÞ>5mg=LÞ
using the conditional distribution bFDOobs jDOsim

(conditional on the
calibrated parameter estimates). The process was repeated until
finding the maximum BOD load for which this probability satisfied
PDOobs >5 ¼ PðDOobs >5mg=LjðDOsimjbq;BODloadÞ>5mg=LÞ � 0:1 at
the point of discharge. The third strategy was similar to the
Table 1
Comparison of single point parameter estimates and true parameter values of the ESP m

Parameter name (units) Mean and std dev. Bayesian estimate

E (m
2

s ) 317.2 (7.1)

ka(1/day) 0.28 (0.01)
kd(1/day) 0.34 (0.001)
second strategy but instead of using the conditional distributionbFDOobsjDOsim
, the probability of non-compliance PDOobs >5 ¼

PðDOobs >5mg=LjðDOsimjBODloadÞ>5mg=LÞ � 0:1 was evaluated
using the unconditional distribution FDOobs jDOsim

.
The maximum load Wmax   computed from bFDOobs jDOsim

in the
second strategy or from FDOobs jDOsim

in the third strategy is, from
Section 2.4, a direct estimate of the TMDL load in Eq. (25). Fig. 6 and
Table 2 summarize the results obtained after implementing the
above strategies. Fig. 6 shows the minimum DO concentrations
obtained under different BOD loads ðWscenarioÞ and for a 10% risk of
non-compliance. It also shows how the BOD loads and resulting
minimum DO concentrations change if the risk of non compliance
is set to 30% and 50%.

Fig. 6 shows that as the BOD load is reduced the minimum DO
concentration in the estuary increases. The figure also shows that
there is a high agreement between the BOD load estimates ob-
tained using the distribution bFDOobsjDOsim

, this is, conditional on the
calibrated parameters, and the estimates obtained with the un-
conditional distribution FDOobs jDOsim

. This result fundamentally in-
dicates that parametric uncertainty is small for this TMDL
application. To explain this statement, note from Eq. (23) that the
conditional and unconditional distributions, in this case bFDOobs jDOsim

and FDOobsjDOsim
, are equal in the absence of parametric uncertainty

because then the posterior parameter distribution fqðqjZ;XÞ col-
lapses into a Dirac Delta unitary function centered at the mean of
the parameter values. The narrow shape of the marginal parameter
distributions (Fig. 5) supports the conclusion that parametric un-
certainty is small for this TMDL application.

In this particular problem, Fig. 6 also indicates that the BOD
loads computed with the first strategy or conventional approach
almost coincide with the loads computed with the conditional and
unconditional distributions under a 50% risk of non-compliance. As
odel.

True value Abs. and relative difference

300 17.2 (5.7%)

0.3 0.03 (�6.67%)
0.35 0.01 (�2.8%)



Table 2
Estimated loads of BOD for different DO standards and risks of non-compliance.

DO Stand.
(mg/L)

L (g/s) 10% Risk of non-compliance 30% risk of non-compliance

BOD
Load (TMDL) (g/s)

Reductiona

(%)
MOS
(g/s)

rf BOD
Load (TMDL) (g/s)

Reductiona

(%)
MOS
(g/s)

rf

4 270 202 33 68 0.25 255 15 15 0.06
5 220 135 55 85 0.39 195 35 25 0.11
6 180 93 69 87 0.48 150 50 30 0.17
7 130 60 80 70 0.54 100 67 30 0.23

a Load reduction from current conditions.

Fig. 7. Location of Sawgrass lake.
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an example, the computed load reduction necessary to achieve the
5mg/L DO standard is approximately 27% (from 300 g/s to 220 g/s)
using the conventional approach, and approximately 22% (from
300 g/s to 235 g/s) using the conditional and unconditional
distributions.

For the second and third strategies Fig. 6 shows that the lower
the risk of non-compliance, the larger the load reduction necessary
tomaintain the estuary's DO concentration above a certain level. As
an example, the BOD load reduction necessary to maintain the DO
concentration above 5mg/L is approximately 22% from 300 g/s to
235 g/s using a 50% risk of non-compliance, and about 35% from
300 g/s to about 195 g/s using a 30% risk of non-compliance. For the
conditions of the problem, Fig. 6 and Table 2 indicate that the BOD
load reduction necessary to achieve the DO standard of 5mg/L with
a 10% risk of non-compliance is approximately 55% corresponding
to a reduction from 300 g/s to 135 g/s. Note that the BOD load of
Wmax ¼135 g/s corresponds in this case to the TMDL estimate, as it
includes all major sources of uncertainty as well as an acceptable
degree of non-compliance.

To compute the MOS and the fraction of load (rf ) that accounts
for all sources of uncertainty in the problem, it is necessary to use
Eq. (25) with TMDL¼ 135 g/s and L¼ 220 g/s which was obtained
from the conventional approach. In this case, MOS¼ 85 g/L and rf
¼ 0.39. This later value indicates that the conventional estimate of
BOD load (L) is reduced by approximately 39% to account for
different sources of uncertainty. The fraction rf is extremely
important, because an appropriate documentation of the values
obtained in different projects can be useful to guide the definition
of TMDLs in data limited projects. For illustrative purposes, Table 2
shows the values of L, MOS and rf computed for different DO
standards and for a 10% and 30% risk of non compliance.

4. Nutrient Total Maximum Daily Load example

This section illustrates the application of the framework out-
lined in Section 2 to support the development of a nutrient TMDL
for Sawgrass Lake, Florida. Sawgrass Lake is a 412 acre water body
located in southern Osceola County and is part of the upper St.
Johns River (Fig. 7). The lake is shallow with an average depth of 1.5
meters and receives nutrient inputs from an approximately 7000
acre watershed mostly dominated by wetlands, agricultural areas
and rangeland. The lake was listed as impaired for nutrients in the
Florida 1998 303 (d) list, and in 2009 the U.S. Environmental Pro-
tection Agency (USEPA) conducted a TMDL study for nutrients and
BOD to reduce the presence of aquatic plants and large masses of
nuisance hydrilla which is common in unbalanced systems (U.S.
Environmental Protection Agency, 2009). The goal of the TMDL
was to bring the water quality of the lake to levels consistent with
the standards of waters for recreation and propagation of a healthy
and well-balanced population of fish and wildlife (U.S.
Environmental Protection Agency, 2009). Based on the modeling
results, however, the 2009 study concluded that it was not feasible
to set a specific TMDL for the system given that the desired water
quality levels could not be attained even by removing all the
existing anthropogenic inputs from the watershed.

The U.S. Environmental Protection Agency used a linked
watershed and lake water quality model for the 2009 study. The
watershed model was developed using the Loading Simulation
Program Cþþ (LSPC) and the lake model was developed using the
Water Quality Analysis and Simulation Program (WASP). The
models were calibrated against observations of Biochemical Oxy-
gen Demand (BOD), Dissolved Oxygen (DO), Total Nitrogen (TN),
Ammonium (NH4), Nitrates (NO3), Total Phosphorus (TP), Ortho-
phosphates (PO4), and Chlorophyll a (Chla) available from 1998
through 2008. The watershed model was forced with observations
of rainfall and nutrient point source loadings and the simulation
results used to force the lake model with flows and input concen-
trations as detailed in U.S. Environmental Protection Agency
(2009). Once calibrated, the models were used to evaluate the
response of the lake to different nutrient load reduction scenarios
and ultimately to support a TMDL definition for the system.

The 2009 Sawgrass Lake WASP water quality model was used in
this investigation to illustrate the applicability of the uncertainty
analysis framework described in Section 2.0 in practical TMDL
studies. For this purpose, two basic aspects of the original model
developed in 2009 were retained. First, the simulation period
which covers an 11 year period starting on 1/1/1998 and ending on
12/31/2008, and second, the nutrient loads and boundary condi-
tions obtained from thewatershedmodel for the 11 year simulation
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period. The reader is referred to U.S. Environmental Protection
Agency (2009) for a detailed description of the forcing time series
of nutrients, BOD and DO included in the WASP lake model which
were developed from the calibrated and validated LSPC watershed
model. For this investigation, the WASP model setup and boundary
conditions developed by USEPA in 2009 were assumed correct and
the model parameters and estimates of uncertainty were re-
computed using the procedures outlined in Section 2. A summary
of the available observations to support the calibration and un-
certainty analysis of the WASP model is presented in Table 3.

4.1. Target nutrient concentrations

The purpose of a nutrient TMDL is to maintain nutrients levels
below specific thresholds to avoid excessive algae development and
thus protect the ecological integrity and service of aquatic systems.
In the State of Florida, nutrient numeric standards for lakes are
generally expressed in terms of annual geometric mean thresholds
and can vary from 0.01 mgP/L to 0.16 mgP/L for TP, and from 0.51
mgN/L to 2.23 mgN/L for TN. The actual nutrient standards, how-
ever, also depend on other factors such as the levels of Chla and
turbidity as stated in Florida's rule 62e302.531(2). For simplicity
and illustrative purposes, this investigation used arbitrarily defined
thresholds for Total Phosphorus and Total Nitrogen in Sawgrass
Lake. The target for Total Phosphorus was set to a maximum annual
geometric mean concentration of TP¼ 0.075mg/L and for Total
Nitrogen to a maximum geometric mean concentration of
TN¼ 1.25mg/L. The allowable frequency of non-compliance was
set to 1 in 3 years or approximately 30%. The set of nutrient
thresholds is reasonable and within the ranges observed in similar
nutrient TMDL studies conducted in the state of Florida.

4.1.1. Description of Water Quality Analysis and Simulation
Program WASP

The TMDL for Sawgrass Lake was defined based on the WASP
model predictions of the lake's water quality under different
nutrient loading conditions. WASP is a generalized framework for
modeling the fate and transport of contaminants in surface waters
(Ambrose et al., 1993). The model represents an aquatic system as a
network of segments connected by advective and dispersive mass
fluxes.WASP is capable of representing one-dimensional (1D), two-
dimensional (2D), and fully 3D systems and includes algorithms for
simple eutrophication processes; advanced eutrophication pro-
cesses with several species of phytoplankton, periphyton, and
benthic algae, and algorithms for fate and transport of mercury and
organic toxicants. The kinetics (Ambrose et al., 1993) and processes
included in the conventional eutrophication module are based on
the Potomac Eutrophication Model (Thomann and Fitzpatrick,
1982) and are general for most practical problems involving the
analysis of variables such as organic phosphorus OrgP, PO4,
Table 3
Summary of available observations to support the calibration and uncertainty
analysis of the Sawgrass Lake model.

Variable Period of Available Data No Observations Average

DO 1/5/1998 - 12/31/2008 174 5.0 mg=L
BOD 1/10/2006 - 9/3/2008 70 3.2 mg=L
Chla 1/5/1998 - 9/3/2008 130 15.7 mg=L
TN 1/5/1998 - 9/3/2008 159 2.0 mg=L
OrgN 1/5/1998 - 9/3/2008 156 1.9 mg=L
NH4 1/5/1998 - 9/3/2008 158 0.05 mg=L
NO3 1/5/1998 - 9/3/2008 163 0.03 mg=L
TP 1/5/1998 - 9/3/2008 159 0.11 mg=L
OrgP 1/10/2006 - 9/3/2008 59 0.09 mg=L
PO4 1/10/2006 - 9/3/2008 62 0.042 mg=L
OrgN,NH4, NO3, DO,BOD, Chla, and total suspended solids (TSS).
WASP has been widely applied in the past to support the devel-
opment of TMDLs in the United States (Camacho et al., 2014; Wool
et al., 2003; Zou et al., 2006).

4.2. TMDL estimation procedure

The nutrient TMDL for Sawgrass Lake was defined using the
WASP water quality model and the uncertainty framework pre-
sented in Section 2 as follows.

4.2.1. Model calibration and uncertainty analysis
As a first step, the calibration parameters and parametric space

i.e. the range of maximum and minimum values typically observed
or reported for each parameter were identified (Table 4). Then,
2000 combinations of parameter values were sampled from the
parametric space using uniform probability distributions. The
WASPmodel was then executed 2000 times using each sampled set
of model parameters and for each model execution the likelihood
functions listed in Table 4 were evaluated to obtain the posterior
probability distributions of the model parameters following the
Bayesian inference procedure described in Section 2.2. The simu-
lation period for the runs was 1/1/1998 - 12/31/2008.

The calibrated parameter values were defined from the poste-
rior probability distributions by calculating the mean of the dis-
tributions. The results of this process are summarized in Table 5
including the standard deviation of the posterior parameter dis-
tributions which represent an estimate of uncertainty in the cali-
brated values.

To obtain estimates of uncertainty on the predictions of TN and
TP, the unconditional distributions fTNobsjTNsim

and fTPobs jTPsim were
calculated as described in Sections 2.1 and 2.2, that is, by
first computing for each of the 2000 model executions the condi-
tional distributions of TN bf TNobs jTNsim

ðTNobsjTNsimÞ and TPbf TPobs jTPsim ðTPobsjTPsimÞ using Eq (9) through (13) and then by
marginalizing out the posterior distribution of the model parame-
ters impacting the predictions of TN and TP i.e. fqN ðqNjTNsim;XÞ and
fqP ðqP jTPsim;XÞ using Eq. (17). Once obtained, the unconditional
distributions of TN and TP, fTNobs jTNsim

and fTPobs jTPsim were used to
compute the Bayesian averagedmodel predictions of TN and TP and
associated 95% confidence bounds using Eq. (24). The above process
was also implemented to estimate the uncertainty in the pre-
dictions of Chla, DO, BOD and the different subspecies of Nitrogen
(OrgN, NH4 and NO3) and Phosphorus (OrgP, PO4). Results of this
activity are presented from Figs. 8e10 for all the simulated
variables.

The results show that the Bayesian averaged model predictions
capture the main trends and variations exhibited by the observa-
tions, and also that the computed confidence bounds enclose most
of the observations. The existence of observations outside the 95%
uncertainty bounds suggest that there may be processes not
accounted for by the current model structure, parameters and
forcing conditions. For example, there may be missing loads in the
model inputs if there are unreported loads into the system. Or,
there may be more complex model components such as a sediment
digenesis model that are necessary to simulate with more accuracy
the magnitude and seasonal variability of the benthic nutrient
fluxes. The Sawgrassmodeling results reflect the level of model skill
typically observed in TMDL applications.

4.2.2. Nutrient TMDL and MOS
The unconditional distributions fTNobs jTNsim

and fTPobsjTPsim were
used to calculate the load reductions of TN and TP necessary
to achieve the water quality goals in Sawgrass Lake. In particular,
the maximum loads of TN and TP were computed to satisfy



Table 4
Water quality variables, model parameters and likelihood functions evaluated for the Sawgrass Lake model uncertainty analysis.

Variable Inferred Model Parameter(s)a Parameter Range (1/day) Likelihood Function

OrgN KOrgN 0.01e0.04

LOrgNðqiÞ ¼ ð2pÞ�n=2

ðs
εOrgNi

ÞnOrgN
YnOrgN

j¼1

exp

8><>:� 1
2

0@εOrgNj � mOrgNi � fOrgNiðεOrgNj�1 � mOrgNÞ
sεOrgNi

1A29>=>;
NH4 KNit 0.025e0.1

LNH4ðqiÞ ¼ ð2pÞ�n=2

ðs
εNH4i

ÞnNH4
YnNH4

j¼1

exp

8<:� 1
2

 
εNH4j � mNH4i � fNH4iðεNH4j�1 � mNH4Þ

sεNH4i

!2
9=;

NO3 KDenit 0.05e0.3
LNO3ðqiÞ ¼ ð2pÞ�n=2

ðsεNO3i
ÞnNO3

YnNO3

j¼1

exp

8<:� 1
2

 
εNO3j � mNO3i � fNO3iðεNO3j�1 � mNO3Þ

sεNO3i

!2
9=;

TN KOrgN, KNit, KDenit
LTNðqiÞ ¼ ð2pÞ�n=2

ðsεTNi
ÞnTN

YnTN

j¼1

exp

8<:� 1
2

 
εTNj � mTNi � fTNiðεTNj�1 � mTNÞ

sεTNi

!2
9=;

OrgP KOrgP 0.1e0.5

LOrgPðqiÞ ¼ ð2pÞ�n=2

ðsεOrgPi
ÞnOrgP

YnOrgP

j¼1

exp

8><>:� 1
2

0@εOrgPj � mOrgPi � fOrgPiðεOrgPj�1 � mOrgPÞ
sεOrgPi

1A29>=>;
TP KOrgP

LTPðqiÞ ¼ ð2pÞ�n=2

ðs
εTPi

ÞnTP
YnTP

j¼1

exp

8<:� 1
2

 
εTPj � mTPi � fTPiðεTPj�1 � mTPÞ

sεTNi

!2
9=;

BOD KBOD 0.1e0.5
LBODðqiÞ ¼ ð2pÞ�n=2

ðs
εBODi

ÞnBOD
YnBOD

j¼1

exp

8<:� 1
2

 
εBODj � mBODi � fBODiðεBODj�1 � mBODÞ

sεBODi

!2
9=;

Chla KGrowthKRespKDeath 1.75e2.75
0.08e0.15
0.05e0.15

LChlaðqiÞ ¼ ð2pÞ�n=2

ðsεChlai
ÞnChla

YnChla

j¼1

exp

8><>:� 1
2

0@εChlaj � mChlai � fChlaiðεChlaj�1 � mChlaÞ
sεChlai

1A29>=>;
a KOrgN: OrgN mineralization rate to NH4, KNit: NH4 nitrification rate to NO3,  KDenit : NO3 denitrification rate to N2, KOrgP: OrgP mineralization rate to PO4, KBOD: BOD

decay rate, KGrowth;   KResp and  KDeath: Phytoplankton growth, respiration and death rates respectively.

Table 5
Bayesian parameter estimates for the Sawgrass Lake model.

Parameter Calibrated Value
(1/day)

Standard deviation
(1/day)

KOrgN 0.03 0.005
KNit 0.077 0.0004
KDenit 0.27 0.0071
KOrgP 0.21 0.11
KBOD 0.18 0.002
KGrowth 2.1 0.1
KResp 0.12 0.007
KDeath 0.12 0.01
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PTNobs >1:25 ¼ PðTNobs >1:25mg=L
��ðTNsim

��TNloadÞ>1:25mg=LÞ � b

and PTPobs >0:075 ¼ PðTPobs >0:075mg=L
��ðTPsim��TPloadÞ>0:075mg=LÞ

� b where TNobs and TPobs are the annual geometric means of TN
and TP, TNload and TPload are the unknown TMDL loads and b is the
acceptable risk of non-compliance ðbÞ.

The strategy to obtain the loads TNload and TPload was as fol-
lows: First, the model was executed with different values of TNload
and TPload by applying reduction factors to the input time series of
N and P loads. Second, the unconditional distributions fTNobs jTNsim

and
fTPobsjTPsim were updated using TNload and TPload and the posterior
probability distributions computed in Section 4.2.1. Third, the
updated distributions fTNobsjTNsim

and fTPobsjTPsim were used to compute
the Bayesian average model predictions of TN and TP for the
simulation period 1/1/1998 - 12/31/2008 and the results used to
computed the geometric means TNsim and TPsim. Finally, Eq. (24)
was used to compute TNobs and TPobs using different values of b.
Results of the above process are summarized in Fig. 11 for different
load reduction scenarios ranging from 10% to 90% of the baseline
loads of TN and TP and for the following risks of non-compliance:
b ¼ 10%, 30%, 50% 70% and 90%.

Fig. 11 shows how the computed load reductions of TN and TP
vary as a function of b. In the particular case of TN, Fig. 11 indicates
that in order to meet the nutrient concentration of TN � 1:25 mg=L
it is necessary to have a TN load reduction of at least 26% for a 10%
risk of non-compliance, or a load reduction of at least 11% for a 90%
risk of non-compliance. In the case of TP, Fig. 11 suggests that in
order to meet the nutrient concentration of TP � 0:075 mg=L it is
necessary to reduce the current TP load in at least 37% for a 10% risk
of non-compliance, or in at least 12% for a 90% risk of non-
compliance. From these results, it is clear that the higher the risk
of non-compliance b, the lower the load reduction necessary for the
TMDL. And vice versa, the lower the risk of non-compliance, the
larger the load reduction necessary. b is then an important
parameter that should be defined based on economic and engi-
neering feasibility studies, and between stakeholders and other
parties involved in the definition and enforcement of the local
environmental legislation.

For the particular requirements of the problem, the necessary
load reductions to satisfy the annual geometric mean concentra-
tions of TN¼ 1.25mg/L and TP¼ 0.075mg/L with a risk of non-
compliance of b ¼30% were 25% reduction of TN and 31% reduc-
tion of TP. The margins of safety (MOS) associated with these load
reductions were calculated using Eq. (25). To obtain the maximum
allowable loads without an account for uncertainty (L in Eq. (25)),
the calibrated model (Table 5) was executed with reduced loads of
TN and TP until the geometric means of TN and TP satisfied the
standard concentrations. The calculated load reductions were 17%
for TN and 20% for TP. The MOS for TN and TP were then computed
as the difference between the load reductions calculated with the
calibrated model using the traditional approach and the load re-
ductions calculated using the full uncertainty analysis. The result-
ing MOS were 8% for TN and 10% for TP.
5. Discussion and conclusions

This investigation presented a strategy to explicitly evaluate and
incorporate uncertainty in the estimation of TMDLs and MOS. The
most relevant aspects of this strategy include:

� It uses an improved equation (Eq. (3)) to calculate the TMDL risk
of non-compliance which is defined as the probability that



Fig. 8. Observations (red dots) versus Bayesian averaged model predictions (blue line) plus 95% confidence bounds for TN and nitrogen subspecies. (For interpretation of the
references to colour in this figure legend, the reader is referred to the Web version of this article.)

Fig. 9. Observations (red dots) versus Bayesian averaged model predictions (blue line) plus 95% confidence bounds for TP, phosphorus subspecies and Chlorophyll a. (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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water quality observations will violate a particular standard
once the TMDL is implemented (Appendix A). The TMDL is
determined using Eq. (3) by calculating the risk of non-
compliance of different load reduction alternatives and by
selecting the maximum load that satisfies a predefined accept-
able risk of non-compliance.

� The framework, as in other existing risk based approaches re-
quires the definition of an acceptable risk of non-compliance b
(e.g Borsuk et al., 2002; Chen et al., 2012; Hantush and
Chaudhary, 2014).

� The new expression to compute the risk of non-compliance (Eq.
(3)) allows an explicit assessment of parametric and model
uncertainty in the TMDL process and provides a path to
explicitly evaluate theMOS as was presented in Section 2. Eq. (3)
also includes a new explicit mathematical expression to account
for the conditionality between the observations and model



Fig. 10. Observations (red dots) versus Bayesian averaged model predictions (blue line) plus 95% confidence bounds for BOD and Dissolved Oxygen. (For interpretation of the
references to colour in this figure legend, the reader is referred to the Web version of this article.)

Fig. 11. Expected TPobs and TNobs concentrations for different load reduction alternatives and risks of non compliance.

R.A. Camacho et al. / Environmental Modelling & Software 101 (2018) 218e235232
predictions. When the equation is used, it provides an estimate
of observable future water quality conditions conditional on the
predictions of the model and taking into account model and
parametric sources of uncertainty. The resulting approach is a
formal strategy that is solved based on Monte Carlo analysis and
Bayesian inference.

The formulation of a TMDL as a problem of risk of non-
compliance has important advantages. The most evident is that
this risk can be related more naturally to current water quality
standards. For instance, for the state of Florida, the recently adopted
nutrient criteria rule 62e302.531 issued on 2/17/2016, states that
the annual geometric means of TN and TP should not be exceeded
more than once in any consecutive three year period. This fre-
quency can be translated into an acceptable frequency or risk of
non-compliance of 1 in 3 or b ¼ 33:33% which can be used to
compute the necessary nutrient load reduction as illustrated in the
Sawgrass Lake example. In the proposed framework the Margin of
Safety (MOS) becomes a function of the risk of non-compliance,
thus facilitating the comparison between different TMDL studies
and results. The risk of non-compliance is the basis for a more
objective and convenient approach to set the goals of the TMDL and
to define the MOSs.

An additional advantage of defining an acceptable risk of non-
compliance for the TMDL is that it is also possible to link this risk
to a formal probabilistic expression to compute the TMDL. This
investigation introduces the conditional probability given by Eq. (3)
for this purpose. Eq. (3) represents the probability that once the
TMDL for a target variable such as TN or TP is implemented, the
actual water body concentrations will exceed a specific standard,
given that the standard is exceeded by the model predictions. This
equation can be used to calculate the TMDL if a specific risk of non-
compliance is provided as illustrated for Sawgrass Lake. The con-
ditional probability given by Eq. (3) also represents an expression of
uncertainty, and thus, constitutes an objective approach to incor-
porate uncertainty in TMDL studies.

The conditional probability distribution shown in Eq. (3) is
computed using the model conditional processor proposed by
Todini (2008). This strategy is robust and relatively straightforward
to implement but has a couple of limitations that must be taken into
account during its implementation. The first limitation is that the
selection of a probability model to fit the upper and lower tails of
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the observations, i.e. Eq. (12) and Eq. (13), can be very challenging,
especially because water quality time series are generally short and
discontinuous. Because the tail models fit in particular extreme
probabilities, it is important to evaluate if themodels in Eq. (12) and
Eq. (13) are the best alternative to the problem at hand or if other
alternative models can provide a better fit. The second challenge
also resulting from the fact that water quality time series are short
and discontinuous is that the correlation coefficient between ob-
servations and model predictions in the normal space can be very
low and lead unrealistically to high levels of uncertainty, see Eq.
(11). The above problems are challenges that require more research
as of 2018, but it is reasonable to think that as methods to obtain
water quality observations become cheaper and more portable, the
limitations caused by short time series will be resolved.

The framework introduced in Section 2 also accounts for the
impacts of parametric uncertainty by marginalizing the posterior
parameter distribution from the conditional distribution using Eq.
(16). The computation of the posterior parameter distribution relies
on the use of the likelihood function recently proposed by Hantush
and Chaudhary (2014) and follows the traditional Bayesian infer-
ence process (Dilks et al., 1992). Once computed, is possible to
obtain the marginal distributions of the individual parameters and
calibrated estimates using any central tendency measure such as
the average or median of the distribution.

Finally, the Margin of Safety (MOS), which is an important
aspect of a TMDL application can be obtained through Eq. (26) by
computing the difference between the permissible load calculated
using the uncertainty framework presented in Section 2, and the
permissible load calculated as usual using the calibratedmodel. The
rationale of Eq. (26) suggests in principle that the load computed
using the traditional approach is close to the expected or most
probable load reduction necessary to achieve the TMDL goals, and
that the load computed using the proposed approach accounts for
the confidence level necessary to achieve such goals taking into
account the existence of different sources of uncertainty.
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Appendix A. Definition of risk in the context of Total
Maximum Daily Load applications

Because the definition of risk can vary depending on the field of
study and the strategies used for its calculation, it is necessary to
provide an explicit definition of risk for TMDL studies. In engi-
neering, risk is defined as the probability of failure of a system. This
definition of risk is derived from the concept of performance failure
which is used in engineering to describe a system that is unable to
perform as expected. As described by Singh et al. (2007), a system
fails when the demand, or loading D exceeds the capacity or
resistance R of the system. The probability of failure or risk can be
expressed in terms of D and R as

Pf ¼ PðD>RÞ (A.1)

The above concepts can be applied in the context of water
quality. A TMDL reaches a point of performance failure when the
receiving water body is unable to maintain the water quality below
or above the levels defined by the water quality standards. For
example, if a water quality standard defines a minimum concen-
tration that must be maintained in the water body c�, the TMDL has
a performance failure when the observed concentrations Z exceed
c�. The probability of failure or risk can now be expressed in terms
of Z and c� as

Pf TMDL ¼ PðZ > c�Þ (A.2)

To directly evaluate PðZ > c�Þ, the TMDL must be implemented
and then the water quality concentrations Z monitored long
enough to allow the adjustment of a probability distribution. This is
obviously unrealistic as decision makers need to know PðZ > c�Þ
prior to the TMDL implementation. To solve this issue, an approx-
imation of PðZ > c�Þ can be obtained by using mathematical model
predictions of the water quality concentrations under the TMDL. In
particular, if the model predictions are denoted by Y, then Eq. (A.2)
can be calculated as

Pf TMDL ¼ PðZ > c�jY > c�Þ (A.3)

Equation (A.3) is solved following the procedures described in
Section 2 and can be used in two ways. First to know the probability
of failure Pf TMDL of a TMDL if the TMDL is known, and second, to
back calculate the TMDL if the probability of failure Pf TMDL is known.
The first application is a traditional problem where the demand or
loading D and the capacity or resistance R of the system are known.
The second application requires the definition of an allowable
probability of failure. This probability can be directly obtained
from the definition of a particular water quality standard, or by
consensus between stakeholders and state agencies of water quality
protection.

In practice, water quality standards have an acceptable fre-
quency of “failure” of the TMDL. These are acute or sporadic events
when the water quality is allowed to fall below the desired levels
without causing a permanent damage to the ecological integrity of
the water body. This frequency can be translated into a probability
ðbÞ (similar to the way the frequency of heads and tails outcomes of
a coin toss is translated into probability) to back calculate the TMDL
as proposed in this investigation. By using the probability b, the
TMDL must satisfy Pf TMDL <b or

Pf TMDL ¼ PðZ > c�jY > c�Þ<b (A.4)
Appendix B. Practical implications of the use of Bayesian
Analysis

For practitioners unfamiliar with Bayesian Analysis sometimes
is difficult to identify the differences between a traditional cali-
bration procedure and calibrations based on Bayesian Analysis. A
brief discussion on the topic is presented below.

Traditionally, during a manual calibration or automatic calibra-
tion procedure, a model is executed several times with different
parameter combinations. For each run, the goodness of fit is eval-
uated using statistics such as relative error, index of agreement,
mean squared error, Nash and Sutcliffe criterion and hypothesis
testing comparing means, variances etc between the model pre-
dictions and observations. The process is repeated until a desired
level of model performance has been reached and ultimately leads
to the calibrated set of parameter values.

The purpose of a Bayesian Monte Carlo analysis is not only to
obtain the calibrated parameter values but to obtain the full
probability distribution of the model parameters to be able to
quantify the level of dispersion in the distributions and propagate it
to the model predictions to determine the impacts of parametric
uncertainty (Mantovan and Todini, 2006). The parameter distri-
butions are obtained by means of Eq. (18). Once the parameter
distributions are calculated, then it is possible to obtain the
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calibrated parameter values using any measure of central tendency
of the distributions such as the median or mean. With the posterior
parameter distribution it is also possible to obtain the 5% and
95% confidence bounds around the predictions of the calibrated
model.

At the core of the Bayesian analysis lies the likelihood function
which is a probability density function used to describe the sta-
tistical properties of the residuals between the model predictions
and the observations. The residuals are usually biased, have trends
and/or are correlated. These are some of the most critical statistical
properties that must be captured while developing the likelihood
function. The use of the likelihood function ensures that the
Bayesian analysis will converge to the true parameter probability
distributions (Bayesian consistency) if an infinite combinations of
model parameter values are evaluated through Monte Carlo ex-
periments (Bayesian coherence).

The likelihood function presented in this investigation is able to
represent the bias and correlation of the residuals. In the theoretical
example was demonstrated that by using this likelihood function
the Bayesian analysis procedure was able to back calculate with
high accuracy the parameter values used to generate the data. For
more details on Bayesian analysis the reader is referred to Kennedy
and O'Hagan (2001); Mantovan and Todini (2006) and Qian et al.
(2003).
Appendix C. Calculation of the likelihood function LðqjZ;XÞ

The following first-order autoregressive error model is used by
Hantush and Chaudhary (2014) and Li et al. (2011) to represent a
sequence of errors that is biased and autocorrelated

εt � m ¼ f½εt�1 � m� þ ε (C.1)

where m is the mean of the residuals; f is a first order correlation
coefficient and ε � Nð0; s2

ε
Þ. Note from the properties of autore-

gressive models that f<1 to satisfy stationarity. Further, note that
because ε is Gaussian, ε is also Gaussian and follows the distribution
ε � N½m; s2

ε
=ð1� f2Þ�. The likelihood function for this error model is

given by,

LðqiÞ ¼ ð2pÞ�n=2ðs
εiÞ�n

Yn
j¼1

exp

(
� 1
2

"
εj � mi � fi

�
εj�1 � mi

�
s
εi

#2)
(C.2)

Eq. (C.2) is a conditional distribution and is valid for moderate to
large sample sizes of n. Parameters of this errormodel ðm ; f and s2

ε
)

can be estimated using Bayesian analysis, maximum likelihood,
nonlinear least squares or any other approach. Bayesian analysis is
probably the most common approach, but requires large amounts
of Monte Carlo simulations to compute bm ; bf and bs2

ε
and the pa-

rameters from the hydrologic or water quality model. To reduce the
number of parameters for the inference process, Hantush and
Chaudhary (2014) proposed the use of maximum likelihood,
which, although it requires a considerable amount of algebraic
operations, provides analytical estimates of bm ; bf and bs2

ε
. These

estimates are computed first by equating the partial derivatives of
the logarithm of Eq. (C.2) to zero with respect to each parameter
and then by solving for the unknowns bm ; bf and bs2

ε
. This process

leads to (Hantush and Chaudhary, 2014):

bmi ¼
1

n
�
1� bfi

� Xn
j¼1

�
εj � bfiεj�1

�
(C.3)
bs2
εi
¼ 1

n

Xn
j¼1

�
εj � bmi � bfi

�
εj�1 � bmi

�
2
(C.4)

and finally bf is computed by solving the quadratic equation
Abf2 þ Bbf þ C ¼ 0

bfi ¼
�B±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 4AC

p

2A
(C.5)

where

A ¼
0@Xn

j¼1

εj�1

1A2

� n
Xn
j¼1

�
εj�1

�2
B ¼ n

Xn
j¼1

�
εj�1

�2 �Xn
j¼1

εj�1

0@Xn
j¼1

εj þ
Xn
j¼1

εj�1

1Aþ n
Xn
j¼1

εjεj�1

C ¼
Xn
j¼1

εj

0@Xn
j¼1

εj�1

1A� n
Xn
j¼1

εjεj�1

(C.6)

Note that for every parameter combination qi, i ¼ 1; 2; :::m; of
the hydrologic or water quality model, there exists a corresponding
set of parameters bmi ; bfi and bs2

εi
of the error model. To obtain the

overall parameter estimates of the error model it is possible to
compute a weighted average value based on the support of the
posterior distribution fqðqjZ;XÞ by

bm ¼
Xm
i¼1

bmifqi
ðqijZ;XÞ (C.7)

bs2
ε
¼
Xm
i¼1

bs2
εi
fqi
ðqijZ;XÞ (C.8)

bf ¼
Xm
i¼1

bfifqi
ðqijZ;XÞ (C.9)
Appendix D. Estimation of Calibrated Parameters from the
Posterior Parameter Distribution fq

Once fqðqjZ;XÞ has been computed (Section 2.2), it is easy to
proceed with the computation of the marginal distributions of the
water quality model parameters q1; q2… qp i.e. f ðq1Þ; f ðq2Þ…f ðqpÞ
and to obtain single point estimates bq1; bq2…bqp. As an example, the
general expression for the marginal distribution of the parameter
qk i.e. f ðqkÞ is given by

f ðqkÞ ¼
Z

q1…qk�1;qkþ1…qp

fqðqjZ;XÞdq1…dqk�1dqkþ1…dqp (D.1)

or in discrete terms by,

f ðqkÞ ¼
X

q1…qk�1;qkþ1…qp

fqðqjZ;XÞ (D.2)

and once obtained, it is possible to find the single point estimate of
qk (i.e. bqk) by computing the mean or expected value of the distri-
bution f ðqkÞ, which is mathematically equivalent to the first
moment of area
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f ðqkÞ ¼
Ze
d

qkf ðqkÞdqk (D.3)

or in discrete terms

f ðqkÞ ¼
Xe
l¼d

qkf ðqkÞ (D.4)

where ½d; e� represents the range of qk.

References

Alameddine, I., Cha, Y., Reckhow, K.H., 2011. An evaluation of automated structure
learning with Bayesian networks: an application to estuarine chlorophyll dy-
namics. Environ. Model. Software 26 (2), 163e172.

Ambrose, R.B., Wool, T.A., Martin, J.L., 1993. The Water Quality Analysis Simulation
Program, WASP5, Part a: Model Documentation. U.S. EPA Center for Exposure
Assessment Modeling, Athens, GA.

Ames, D.P., Lall, U., 2008. Developing total maximum daily loads under uncertainty:
decision analysis and the margin of safety. J. Contemp. Water Res. Educ. 140 (1),
37e52.

Borsuk, M.E., Stow, C.A., Reckhow, K.H., 2002. Predicting the frequency of water
quality standard Violations: a probabilistic approach for TMDL development.
Environ. Sci. Technol. 36 (10), 2109e2115.

Camacho, R.A., Martin, J.L., McAnally, W., Díaz-Ramirez, J., Rodriguez, H., Sucsy, P.,
Zhang, S., 2015. A comparison of bayesian methods for uncertainty analysis in
hydraulic and hydrodynamic modeling. JAWRA J. Am. Water Res. Assoc. 51 (5),
1372e1393.

Camacho, R.A., Martin, J.L., Watson, B., Paul, M.J., Zheng, L., Stribling, J.B., 2014.
Modeling the factors controlling phytoplankton in the St. Louis bay estuary,
Mississippi and evaluating estuarine responses to nutrient load modifications.
J. Environ. Eng. 141 (3), 04014067.

Chapra, S., 1997. Surface Water - Quality Modeling. Waveland Press, Long Grove,
Illinois.

Chen, D., Dahlgren, R.A., Shen, Y., Lu, J., 2012. A Bayesian approach for calculating
variable total maximum daily loads and uncertainty assessment. Sci. Total En-
viron. 430, 59e67.

Cho, E., Arhonditsis, G.B., Khim, J., Chung, S., Heo, T.-Y., 2016. Modeling metal-
sediment interaction processes: parameter sensitivity assessment and uncer-
tainty analysis. Environ. Model. Software 80, 159e174.

Coccia, G., Todini, E., 2011. Recent developments in predictive uncertainty assess-
ment based on the model conditional processor approach. Hydrol. Earth Syst.
Sci. 15 (6), 3253e3274.

Crumpacker, A.L., Butkus, S., 2009. Approaches to defining TMDL margins of safety.
Proc. Water Environ. Federation 2009 (6), 122e136.

Dilks, D.W., Canale, R.P., Meier, P.G., 1992. Development of Bayesian Monte Carlo
techniques for water quality model uncertainty. Ecol. Model. 62, 149e162.

Dilks, D.W., Freedman, P.L., 2004. Improved consideration of the margin of safety in
total maximum daily load development. J. Environ. Eng. 130 (6), 690e694.

Franceschini, S., Tsai, C.W., 2008. Incorporating reliability into the definition of the
margin of safety in total maximum daily load calculations. J. Water Resour.
Plann. Manag. 134 (1), 34e44.

Gelman, A., Carlin, J.B., Stern, H.S., Rubin, D.B., 2004. Bayesian Data Analysis.
Chapman and Hall/CRC, Boca Raton, Fla.

Gilks, W.R., Richardson, S., Spiegelhalter, D.J., 1996. Markov Chain Monte Carlo in
Practice. Chapman and Hall, London.

Gronewold, A.D., Borsuk, M.E., 2009. A software tool for translating deterministic
model results into probabilistic assessments of water quality standard
compliance. Environ. Model. Software 24 (10), 1257e1262.

Hantush, M., Chaudhary, A., 2014. Bayesian framework for water quality model
uncertainty estimation and risk management. J. Hydrol. Eng. 19 (9), 04014015.

Kennedy, M.C., O'Hagan, A., 2001. Bayesian calibration of computer models. J. Roy.
Stat. Soc. Series B (Statistical Methodology) 63 (3), 425e464.

Krzysztofowicz, R., 1999. Bayesian theory of probabilistic forecasting via deter-
ministic hydrologic model. Water Resour. Res. 35 (9), 2739e2750.

Krzysztofowicz, R., Kelly, K.S., 2000. Hydrologic uncertainty processor for proba-
bilistic river stage forecasting. Water Resour. Res. 36 (11), 3265e3277.

Kunz, R.G., 2011. Environmental Calculations: a Multimedia Approach. John Wiley
and Sons.
Langseth, D.E., Brown, N., 2010. Risk-based margins of safety for phosphorus TMDLs

in lakes. J. Water Resour. Plann. Manag. 137 (3), 276e283.
Li, L., Xu, C.Y., Xia, J., Engeland, K., Reggiani, P., 2011. Uncertainty estimates by

Bayesian method with likelihood of AR (1) plus Normal model and AR (1) plus
Multi-Normal model in different time-scales hydrological models. J. Hydrol. 406
(1e2), 54e65.

Liang, S., Jia, H., Xu, C., Xu, T., Melching, C., 2016. A Bayesian approach for evaluation
of the effect of water quality model parameter uncertainty on TMDLs: a case
study of Miyun Reservoir. Sci. Total Environ. 560e561, 44e54.

Mantovan, P., Todini, E., 2006. Hydrological forecasting uncertainty assessment:
incoherence of the GLUE methodology. J. Hydrol. 330 (1e2), 368e381.

Mara, T.A., Delay, F., Lehmann, F., Younes, A., 2016. A comparison of two Bayesian
approaches for uncertainty quantification. Environ. Model. Software 82, 21e30.

Maranzano, C.J., Krzysztofowicz, R., 2004. Identification of likelihood and prior
dependence structures for hydrologic uncertainty processor. J. Hydrol. 290
(1e2), 1e21.

Martin, J.L., McCutcheon, S.C., 1999. Hydrodynamics and Transport for Water
Quality Modeling. CRC Press, Boca Raton, FL.

NRC, 2001. Assessing the TMDL Approach to Water Quality Management. National
Research Council Water Science and Technology Board, Division of Earth and
Life Studies, Washington, D.C.

Park, D., Roesner, L.A., 2012. Evaluation of pollutant loads from stormwater BMPs to
receiving water using load frequency curves with uncertainty analysis. Water
Res. 46 (20), 6881e6890.

Patil, A., Deng, Z.-Q., 2011. Bayesian approach to estimating margin of safety for total
maximum daily load development. J. Environ. Manag. 92 (3), 910e918.

Qian, S.S., Stow, C.A., Borsuk, M.E., 2003. On Monte Carlo methods for bayesian
inference. Ecol. Model. 159, 269e277.

Reckhow, K.H., 2003. On the need for uncertainty assessment in TMDL modeling
and implementation. J. Water Resour. Plann. Manag. 129, 245e246.

Schoups, G., Vrugt, J.A., 2010. A formal likelihood function for parameter and pre-
dictive inference of hydrologic models with correlated, heteroscedastic, and
non-Gaussian errors. Water Resour. Res. 46 (10), W10531.

Shirmohammadi, A., Chaubey, I., Harmel, R.D., Bosch, D.D., Munoz-Carpena, R.,
Dharmasri, C., Sexton, A., Arabi, M., Wolfe, M.L., Frankenberger, J., Graff, C.,
Sohrabi, T.M., 2006. Uncertainty in TMDL models. Transac. ASABE 49 (4),
1033e1049.

Singh, V.P., Jain, S.K., Tyagi, A., 2007. Risk and Reliability Analysis. ASCE press,
Reston, VA.

Thomann, R.V., Fitzpatrick, J.J., 1982. Calibration and Verification of a Mathematical
Model of the Eutrophication of the Potomac Estuary. Prepared for Department
of Environmental Services. Government of the District of Columbia, Washing-
ton, D.C.

Todini, E., 2008. A model conditional processor to assess predictive uncertainty in
flood forecasting. Int. J. River Basin Manag. 6 (2), 123e137.

Todini, E., 2009. Predictive uncertainty assessment in real time flood forecasting. In:
Baveye, P., Laba, M., Mysiak, J. (Eds.), Uncertainties in Environmental Modelling
and Consequences for Policy Making. Springer Netherlands, pp. 205e228.

U.S. Environmental Protection Agency, 1991. Guidance for Water Quality-based
Decisions: the TMDL Process. Washington, D.C.

U.S. Environmental Protection Agency, 1999. Protocol for Developing Nutrient
TMDLs. Washington, D.C, p. 135.

U.S. Environmental Protection Agency, 2009. Proposed Total Maximum Daily Loads
for the Sawgras Lake WBID 28931 Nutrients and Dissolved Oxygen. Region 4,
p. 33.

Van der Waerden, B.L., 1952. Order tests for two-sample problem and their power I.
Indagat. Math. 14, 453e458.

Van der Waerden, B.L., 1953. Order tests for two-sample problem and their power II.
Indagat. Math. 15, 303e310.

Walpole, R.E., Myers, R.H., Myers, S.L., Ye, K.E., 2013. Probability and Statistics for
Engineers and Scientists: Pearson New International Edition. Pearson Education
Limited.

Wool, T.A., Davie, S.R., Rodriguez, H.N., 2003. Development of three-dimensional
hydrodynamic and water quality models to support TMDL decision process
for the Neuse River estuary, North Carolina. J. J. Water Resour. Plann. Manag.
129, 295e306.

Zhang, H.X., Yu, S.L., 2004. Appliying the first-order error analysis in determining
the marging of safety for total maximum daily load computations. J. Environ.
Eng. 130 (6), 664e673.

Zou, R., Carter, S., Shoemaker, L., Parker, A., Henry, T., 2006. Integrated hydrody-
namic and water quality modeling system to support nutrient total maximum
daily load development for Wissahickon Creek, Pennsylvania. J. Environ. Eng.
132 (4), 555e566.

http://refhub.elsevier.com/S1364-8152(17)30761-2/sref1
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref1
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref1
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref1
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref2
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref2
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref2
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref3
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref3
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref3
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref3
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref4
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref4
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref4
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref4
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref4
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref5
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref5
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref5
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref5
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref5
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref6
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref6
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref6
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref6
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref7
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref7
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref8
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref8
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref8
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref8
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref9
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref9
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref9
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref9
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref10
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref10
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref10
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref10
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref11
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref11
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref11
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref12
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref12
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref12
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref13
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref13
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref13
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref14
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref14
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref14
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref14
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref15
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref15
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref16
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref16
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref17
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref17
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref17
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref17
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref18
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref18
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref19
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref19
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref19
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref20
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref20
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref20
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref21
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref21
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref21
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref22
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref22
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref23
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref23
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref23
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref24
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref24
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref24
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref24
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref24
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref24
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref25
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref25
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref25
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref25
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref25
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref26
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref26
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref26
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref26
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref27
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref27
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref27
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref28
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref28
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref28
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref28
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref28
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref29
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref29
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref30
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref30
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref30
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref31
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref31
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref31
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref31
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref32
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref32
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref32
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref33
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref33
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref33
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref34
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref34
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref34
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref35
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref35
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref35
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref36
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref36
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref36
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref36
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref36
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref37
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref37
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref38
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref38
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref38
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref38
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref40
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref40
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref40
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref41
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref41
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref41
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref41
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref42
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref42
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref43
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref43
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref44
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref44
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref44
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref45
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref45
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref45
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref46
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref46
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref46
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref47
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref47
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref47
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref48
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref48
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref48
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref48
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref48
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref49
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref49
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref49
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref49
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref50
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref50
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref50
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref50
http://refhub.elsevier.com/S1364-8152(17)30761-2/sref50

	A framework for uncertainty and risk analysis in Total Maximum Daily Load applications
	1. Introduction
	2. Risk of non-compliance of a Total Maximum Daily Load (TMDL)
	2.1. Computation of the conditional distribution f^Z|Y
	2.1.1. Computation of uncertainty estimates based on f^Z|Y

	2.2. Assessment of parametric uncertainty
	2.2.1. Computation of uncertainty estimates including parametric uncertainty

	2.3. Computation of Total Maximum Daily Loads and probability of non-compliance
	2.4. Margin of safety computation

	3. Example 1: TMDL for BOD in an estuary with a point source
	3.1. Generation of synthetic concentrations of dissolved oxygen
	3.2. Uncertainty analysis
	3.3. Estimation of calibrated parameters
	3.4. TMDL and MOS

	4. Nutrient Total Maximum Daily Load example
	4.1. Target nutrient concentrations
	4.1.1. Description of Water Quality Analysis and Simulation Program WASP

	4.2. TMDL estimation procedure
	4.2.1. Model calibration and uncertainty analysis
	4.2.2. Nutrient TMDL and MOS


	5. Discussion and conclusions
	Acknowledgments
	Appendix A. Definition of risk in the context of Total Maximum Daily Load applications
	Appendix B. Practical implications of the use of Bayesian Analysis
	Appendix C. Calculation of the likelihood function L(θ|Z,X)
	Appendix D. Estimation of Calibrated Parameters from the Posterior Parameter Distribution fθ
	References


